

CR CLASSIFICATION SOCIETY

Diversification and Statute Implementation of CR

Donald CHAO, Chairman

CR Classification Society

2017.5.23

2017/5/23

CR Overview

- Founded in 1951
- Headquarters in Taipei
- 5 branch offices:

Kaohsiung, Japan, China, Singapore and South Africa

- Authorized by 8 flag States: Taiwan, Panama, Belize...
- ISO 9001 quality management system since 1995
- 108 employees in Taiwan, including 9 doctors and 51 masters
- Classes 386 ships totaling 4,523,000 GT

RO Performance in Tokyo MOU

Ranked 12 out of 83

23 in High Performance

ANNUAL REPORT

ON
PORT STATE CONTROL
IN THE ASIA-PACIFIC REGION

2016

	Rank	Recognized Organization (RO)	Performance Level	
e:	1	China Classification Society (CCS)		
	2	RINA Services (RINA)		
	3	Korean Register of Shipping (KR)	High	
	4	Lloyd's Register (LR)	Performance	
	5	DNV GL AS (DNV-GL)		
	12	CR Classification Society (CR)		
	23	International Ship Classification		
	24~		Medium	
	~83		Low	

Ship Statistics

2012 DiversificationFrom Ship To Wind And Others

2017/5/23

CR CLASSIFICATION SOCIETY

5 / 16

International Technical Cooperation

2012~2015 DNV-GL + 2014~2015 ABS + 2015~2016 NK

2015 Ultimate Strength under Typhoon and Earthquake

2016 Offshore Wind Turbine Array

8 / 16

CR CLASSIFICATION SOCIETY

2017/5/23

2016-2017 BSMI Technical Team

Bureau of Standards, Metrology & Inspection (BSMI) 標準檢驗局

CR-CSBC Windshield for Container Ship -10% to Wind Resistance

Statute Implementation Ballast Water Management

BWM Convention Implementation Schedule

MEPC 71 (2017/7) will make the final decision.

De-harmonization of the IOPP Renewal Survey

Some flag states allow IOPP renewal survey may be conducted independently: Taiwan, Liberia, Panama, etc.

- *1 Ship constructed before 2019/9/8: shall meets D-1 or D-2 standard until the first IOPP renewal survey completed on or after 2019/9/8, after which time it shall meet D-2 standard.
- *2 Ship constructed on/after 2019/9/8: shall meet D-2 standard.

How Ballast Water Treatment Works?

Methods of ballast water treatment Mechanical **Filtration** Removal of sediments, larges particles or organisms by membranes, disks, screens or magnets UV radiation attacking and breaking the cell membrane killing or **Physical** Ultraviolet (UV) irradiation sterilizing organisms Chemical Biocide injection Chemical biocides injection (chlorine, chlorine ions, chlorine dioxide, sodium hypochlorite, etc.) killing organisms by poisoning Chemical Electrochemical Electrolysis: generation of free chlorine sodium hypochlorite, causing electrochemical oxidation to kill organism

Figures source: http://www.nepia.com/insights/ballast-water-management/the-challenges/

MARPOL Annex VI – Regulation 13 Nitrogen Oxides (NOx)

All CR classed ship should comply with the requirement of MARPOL Annex VI Reg.13 and NOx Technical Code

	Ship	NOx Limit, g/kWh		
Tier	Construction	n = engine's rated speed(rpm)		
	Date	n < 130	130 ≤ n < 2000	n ≥ 2000
- 1	2000	17	45 · n ^{-0.2}	9.8
Ш	2011	14.4	44 · n ^{-0.23}	7.7
I	2016	3.4	9 · n ^{-0.2}	2

ECA (for NOx) :
North American area
United States Caribbean sea area

2017/5/23

CR CLASSIFICATION SOCIETY

13 / 16

MARPOL Annex VI – Regulation 14 Sulphur Oxides (SOx)

Global 0.5%
Sulphur limit was confirmed to apply from 2020/1/1.

Inside ECA: 0.1%

ECA (for SOx):

Baltic Sea area

North Sea

North American area

United States Caribbean Sea area

Figures source : http://www.gulf-marine.com/service/technical_detail/11

MARPOL Annex VI – Chapter 4 Energy Efficiency Design Index (EEDI)

 CResta program (CR Electronic Sea Trial Analysis) calculates sea trial data and ships' EEDI

Δ

$$CO_{2} \text{ emission} \begin{pmatrix} +1. \text{ Main engine} \\ +2. \text{ Auxiliary engine} \\ +3. \text{ Power take in} \\ -4. \text{ Power take off} \\ -5. \text{ Power saving device} \end{pmatrix}$$

$$EEDI_{A} = \frac{f_{i} \cdot f_{c} \cdot f_{l} \cdot \text{Capacity} \cdot f_{w} \cdot V_{ref}}{f_{i} \cdot f_{c} \cdot f_{l} \cdot \text{Capacity} \cdot f_{w} \cdot V_{ref}}$$

CR CLASSIFICATION SOCIETY

THE END

Donald CHAO
Chairman of CR
donaldchao@crclass.org

http://www.crclass.org/

2017/5/23 16 / 16